
4486 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021
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Abstract—While many distributed optimization algorithms have
been proposed for solving smooth or convex problems over the
networks, few of them can handle non-convex and non-smooth
problems. Based on a proximal primal-dual approach, this paper
presents a new (stochastic) distributed algorithm with Nesterov
momentum for accelerated optimization of non-convex and non-
smooth problems. Theoretically, we show that the proposed algo-
rithm can achieve an ε-stationary solution under a constant step
size with O(1/ε2) computation complexity and O(1/ε) commu-
nication complexity when the epigraph of the non-smooth term is
a polyhedral set. When compared to the existing gradient tracking
based methods, the proposed algorithm has the same order of
computation complexity but lower order of communication com-
plexity. To the best of our knowledge, the presented result is the first
stochastic algorithm with the O(1/ε) communication complexity
for non-convex and non-smooth problems. Numerical experiments
for a distributed non-convex regression problem and a deep neural
network based classification problem are presented to illustrate the
effectiveness of the proposed algorithms.

Index Terms—Distributed optimization, stochastic optimization,
momentum, non-convex and non-smooth optimization.

I. INTRODUCTION

R ECENTLY, motivated by large-scale machine learning [1]
and mobile edge computing [2], many signal processing

applications involve handling very large datasets [3] that are
processed over networks with distributed memories and pro-
cessors. Such signal processing and machine learning problems
are usually formulated as a multi-agent distributed optimization
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problem [4]. In particular, many of the applications can be
formulated as the following finite sum problem

min
x

N∑
i=1

(fi(x) + ri(x)) , (1)

whereN is the number of agents,x ∈ Rn contains the model pa-
rameters to be learned, fi(x) : Rn → R is a closed and smooth
(possibly nonconvex) loss function, and ri(x) is a convex and
possibly non-smooth regularization term. Depending on how the
data are acquired, there are two scenarios for problem (1) [5].
� Offline/Batch learning: the agents are assumed to have the

complete local dataset. Specifically, the local cost functions
can be written as

fi(x) =
1

m

m∑
j=1

f ji (x), i = 1, . . . , N, (2)

where f ji (x) is the cost for the j-th data sample at the i-th
agent, and m is the total number of local samples. When
m is not large, each agent i may compute the full gradient
of fi(x) for deterministic parameter optimization.

� Online/Streaming learning: when the data samples follow
certain statistical distribution and are acquired by the agents
in an online/streaming fashion, one can define fi(x) as the
following expected cost

fi(x) = Eξ∼Bi
[fi(x, ξ)], i = 1, . . . , N, (3)

where Bi denotes the data distribution at agent i, and
fi(x, ξ) is the cost function of a random data sample ξ. Un-
der the online setting, only a stochastic estimate Gi(x, ξ)
for ∇fi(x) can be obtained by the agent and stochastic
optimization methods can be used. Note that if the agent is
not able to compute the full gradient in the batch setting,
a stochastic gradient estimate by mini-batch data samples
(with size |I|) can be obtained and the problem is solved
in a similar fashion by stochastic optimization.

These two settings for local cost functions are popularly
used in many machine learning models including deep

learning and empirical risk minimization problems [5]. For both
scenarios, many distributed optimization methods have been
developed for solving problems (1).

Specifically, for batch learning and under convex or strongly
convex assumptions, algorithms such as the distributed subgra-
dient method [6], EXTRA [7], PG-EXTRA [8] and primal-dual
based methods including the alternating direction method of
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multipliers (ADMM) [1], [4], [9] and the UDA in [10] are
proposed. Recently, in [11], the authors propose a general unified
algorithmic framework for such a class of distributed convex
problems. For non-convex problems, the authors in [12] studied
the convergence of proximal decentralized gradient descent
(DGD) method with a diminishing step size. Based on the suc-
cessive convex approximation (SCA) technique and the gradient
tracking (GT) method, the authors in [13] proposed a network
successive convex approximation (NEXT) algorithm for (1),
and it is extended to more general scenarios with time varying
networks and stronger convergence analysis results [14], [15].
In [16], based on an inexact augmented Lagrange method, a
proximal primal-dual algorithm (Prox-PDA) is developed for
(1) with smooth and non-convex fi(x) and without ri(x). A
near-optimal algorithm xFilter is further proposed in [17] that
can achieve the computation complexity lower bound O(1/ε) of
first-order distributed optimization algorithms when the target
accuracy ε is moderate. To handle non-convex and non-smooth
problems with polyhedral constraints, the authors of [18], [19]
proposed a proximal augmented Lagrangian (AL) method for
solving (1) by introducing a proximal variable and an exponen-
tial averaging scheme.

For streaming learning, the stochastic proximal gradient
consensus method based on ADMM is proposed in [20] to
solve (1) with convex objective functions. For non-convex
problems, the decentralized parallel stochastic gradient descent
(D-PSGD) [21] is applied to (1) (without ri(x)) for training
large-scale neural networks, and the convergence rate is ana-
lyzed. The analysis of D-PSGD relies on an assumption that
1
N

∑N
i=1 ||∇fi(x)−∇f(x)||2 is bounded, which implies that

the variance of data distributions across the agents should be
controlled. At federated scenario, a lot of algorithms use local
stochastic gradient descent method to reduce the communica-
tion burden, such as, FedAvg [22], FedProx [23]. But FedAvg
may suffer from “client-drift” when the data is non-identically
independent distribution (non-iid). Recently, SCAFFOLD [24]
use control variates (variance reduction) to reduce influence
by data heterogeneity, which does not require the assumption
that 1

N

∑N
i=1 ||∇fi(x)−∇f(x)||2 is bounded. In fact, these

federated learning algorithms are limited to star networks with a
central coordinator, unlike the presented decentralized algorithm
which can work over any connected network graphs. In [25],
the authors proposed an improved D-PSGD algorithm, called
D2, which also removes such assumption and is less sensitive
to the data variance across agents. However, D2 requires a
restrictive assumption on the eigenvalue of the mixing matrix.
This assumption is relaxed by the GNSD algorithm in [26],
which essentially is a stochastic counterpart of the GT algorithm
in [15]. We should emphasize here that the algorithms in [21],
[25], [26] can only handle smooth problems without constraints
and regularization terms. The work [27] proposed a multi-
agent projected stochastic gradient decent (PSGD) algorithm
for (1) but ri(x) is limited to the indicator function of compact
convex sets. Besides, there is no convergence rate analysis
in [27].

In this paper, we develop a new distributed stochastic
optimization algorithm for the non-convex and non-smooth

problem (1). The proposed algorithm is inspired by the proximal
AL framework in [18] and has three new features. First, the
proposed algorithm is a stochastic distributed algorithm that
can be used either for streaming/online learning or batch/offline
learning with mini-batch stochastic gradients, however, [18]
only can handle the offline learning with full gradient. Sec-
ond, the proposed algorithm can handle nonconvex problem
(1) with non-smooth terms that have a polyhedral epigraph,
which is more general than [18], [19] and [10] only studies the
strongly-convex problem with a common non-smooth term. The
key step that showing the convergence of the proposed method
is to bound the dual variable. Third, the proposed algorithm
incorporates the Nesterov momentum technique for fast con-
vergence. The Nesterov momentum technique has been applied
for accelerating the convergence of distributed optimization. For
example, in [28], [29], the distributed gradient descent methods
with the Nesterov momentum are proposed, and are shown to
achieve the optimal iteration complexity for convex problems. In
practice, since SGD with momentum often can converge faster,
it is also commonly used to train deep neural networks [30],
[31]. We note that [28]–[31] are for smooth problems. To the
best of our knowledge, the Nesterov momentum technique
has not been used for distributed non-convex and non-smooth
optimization.

Our contributions are summarized as follows.
� We propose a new stochastic proximal primal dual algo-

rithm with momentum (SPPDM) for non-convex and non-
smooth problem (1) under the online/streaming setting.
For the offline/batch setting where the full gradients of
the local cost functions are available, SPPDM reduces to a
deterministic algorithm, named the PPDM algorithm.

� Under the assumption that the epigraph of the non-smooth
functions is a polyhedron, we show that the proposed SP-
PDM and PPDM can achieve an ε-stationary solution of (1)
under a constant step size with computation complexities
of O(1/ε2) and O(1/ε), respectively, while both have a
communication complexity of O(1/ε).
The convergence analysis neither requires assumption on
the boundedness of 1

N

∑N
i=1 ‖∇fi(x)−∇f(x)‖2 nor on

the eigenvalues of the mixing matrix.
� As shown in Table I, the proposed SPPDM/PPDM algo-

rithms have the same order of computation complexity as
the existing methods and lower order of communication
complexity when compared with the existing GT based
methods.

� Numerical experiments for a distributed non-convex re-
gression problem and a deep neural network (DNN) based
classification problem show that the proposed algorithms
outperforms the existing methods.

Notation: We denote In as the n by n identity matrix and 1
as the all-one vector, i.e., 1 = [1, . . . , 1]�. 〈a, b〉 represents the
inner product of vectors a and b, ‖a‖ is the Euclidean norm of
vector a and ‖a‖1 is the �1-norm of vector a;⊗ denotes the Kro-
necker product. For a matrix A, σA > 0 denotes its largest sin-
gular value. diag{a1, . . . , aN} denotes a diagonal matrix with
a1, . . . , aN being the diagonal entries whilediag{A1, . . . ,AN}
denotes a block diagonal matrices with each Ai being the ith
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TABLE I
COMPARISONS OF DIFFERENT ALGORITHMS

*To obtain a fair comparison, we need to establish the relation between the proposed measure and the other measures in Remark 4.
†The proposed method requires that the batch size |I| is proportional to ε.

block diagonal matrix. [A]ij represents the element of A in the
ith row and jth column.

For problem (1), we denote x = [x�1 , . . . , x
�
N ]� ∈ RNn,

f(x) =
∑N
i=1 fi(xi), and r(x) =

∑N
i=1 ri(xi). The gradient of

f(·) at x is denoted by

∇f(x) = [(∇f1(x1))�, . . . , (∇fN (xN ))�]�,

where∇fi(xi) is the gradient of fi at xi. In the online/streaming
setting, we denote the stochastic gradient estimates of
agents as

G(x, ξ) = [(Gi(x1, ξ1))
�, . . . , (GN (xN , ξN ))�]�,

where ξ = [ξ�1 , , . . . , ξ
�
N ]. Lastly, we define the following prox-

imal operator of ri

proxαri(x) = argmin
u

α

2
‖x− u‖2 + ri(u),

where α is a parameter.
Synopsis: In Section II, the proposed SPPDM and PPDM al-

gorithms are presented and their connections with existing meth-
ods are discussed. Based on an inexact stochastic primal-dual
framework, it is shown how the SPPDM and PPDM algorithms
are devised. Section III presents the theoretical results of the
convergence conditions and convergence rate of the SPPDM and
PPDM algorithms. The performance of the SPPDM and PPDM
algorithms are illustrated in Section IV. Lastly, the conclusion
is given in Section V.

II. ALGORITHM DEVELOPMENT

A. Network Model and Consensus Formulation

Let us denote the multi-agent network as a graph G, which
contains a node set V := {1, . . . , N} and an edge set E with
cardinality |E| and it does not have repeat edge. For each agent i,
it has neighboring agents in the subsetNi := {j ∈ V |(i, j) ∈ E}
with sizedi ≥ 1. It is assumed that each agent i can communicate
with its neighborhood Ni. We also assume that the graph G
is undirected and is connected in the sense that for any of
two agents in the network there is a path connecting them

through the edge links. Thus, problem (1) can be equivalently
written as

min
xi

i=1,...,N

N∑
i=1

(fi(xi) + ri(xi)) (4a)

s.t.xi = xj , ∀(i, j) ∈ E . (4b)

Let us introduce the incidence matrix Ã ∈ R|E|×N which has
Ã(�, i) = 1 and Ã(�, j) = −1 if (i, j) ∈ E with j > i, and zero
otherwise, for � = 1, . . . , |E|. Define the extended incidence
matrix as A := Ã⊗ In. Then (4) is equivalent to

min
x
f(x) + r(x) (5a)

s.t.Ax = 0. (5b)

B. Proposed SPPDM and PPDM Algorithm

In this section, we present the proposed SPPDM algorithm
for solving (5) under the online/streaming setting in (3). The
algorithm steps are outlined in Algorithm 1. Before showing
how the algorithm is developed in Section II-C, let us make a
few comments about SPPDM.

In Algorithm 1, α, β, γ, c, κ, η are some positive constant
parameters that depend on the problem instance (such as the
Lipschitz constants of {∇fi}) and the graph Laplacian matrix).
Equations (7)-(10) are the updates performed by each agent
i within the kth communication round, for k = 1, 2, . . . , and
i = 1, . . . , N . Specifically, step (7) is the introduced Nesterov
momentum term ski for accelerating the algorithm convergence,
where η is the extrapolation coefficient at iteration k. Step (8)
shows how the neighboring variables {xj}j∈Ni

are used for local
gradient update. Note here that in SPPDM the agent uses the
sample average 1

|I|
∑|I|
j=1Gi(s

k
i , ξ

k
ij) to approximate ∇fi(ski ),

where ξkij ∼ Bi, j = 1, . . . , |I|, denotes the samples drawn by
agent i in the kth iteration. Besides, in (8), both approximate
gradients at ski and sk−1

i are used. Step (9) performs the proximal
gradient update with respect to the regularization term ri(x). In
step (8), the variable {zki } is a “proximal” variable introduced
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Algorithm 1: Proposed SPPDM Algorithm.

Given parameters α, β, γ, c, κ, ηk and initial values of x0i
and z0i = x0i , i = 1, . . . , N. Let

ψi = γ + 2cdi + κ (6)

and set s0i = x0i , i = 1, . . . , N. Do

x
1
2
i = (γ + cdi + κ)

x0i
ψi

+
c

ψi

∑
j∈Ni

x0j −
1

ψi
∇fi(x0i ),

x1i = proxαi
ri

(
x

1
2
i

)
, i = 1, . . . , N.

for communication round k = 1, 2, . . . do
for agent i = 1, 2, . . . , N (in parallel) do

ski = xki + η(xki − xk−1
i ), (7)

x
k+ 1

2
i = x

k−1+ 1
2

i +
di
ψi

((c− α)xki − cxk−1
i ), (8)

+
1

ψi

∑
j∈Ni

((c+ α)xkj − cxk−1
j )

+
1

ψi

(
γ(ski − sk−1

i ) + κ(zki − zk−1
i )

)

− 1

ψi|I|
|I|∑
j=1

(Gi(s
k
i , ξ

k
ij)−Gi(s

k−1
i , ξk−1

ij )),

xk+1
i = proxψi

ri

(
x
k+ 1

2
i

)
, (9)

zk+1
i = zki + β(xk+1

i − zki ). (10)

end for
end for

for overcoming the non-convexity of fi (see (19)), and is updated
as in step (10).

By stacking the variables for all i = 1, . . . , N , one can write
(7)-(10) in a vector form. Specifically, step (8) for i = 1, . . . , N ,
can be expressed compactly as

xk+
1
2 = xk−1+ 1

2 +Uxk − Ũxk−1

+ γΨ−1(sk − sk−1) + κΨ−1(zk − zk−1)

−Ψ−1(Ḡ(sk, ξk)− Ḡ(sk−1, ξk−1)), (11)

where U = U1 ⊗ In ∈ RNn×Nn and Ũ = Ũ1 ⊗ In ∈
RNn×Nn are two matrices satisfying

[U]1ij =

⎧⎨
⎩

di
ψi
(c− α), i = j,

c+α
ψi
, i 
= j and (i, j) ∈ E ,

0, otherwise.
(12)

[Ũ]1ij =

⎧⎨
⎩

dic
ψi
, i = j,

c
ψi
, i 
= j and (i, j) ∈ E ,

0 otherwise.
(13)

for all i, j = 1, . . . , N , Ψ = Ψ1 ⊗ In ∈ RNn×Nn is a diagonal
matrix and the ith element of Ψ1 being ψi := γ + 2cdi + κ for
i = 1, . . . , N , and

Ḡ(sk, ξk) :=
1

|I|
|I|∑
j=1

G(sk, ξkj ). (14)

When the full gradients ∇fi are available under the of-
fline/batch setting, the approximate gradient Gi in (8) and (11)
can be replaced by ∇fi. Then, the SPPDM algorithm reduces
to the PPDM algorithm.

Remark 1: We show that the PPDM algorithm can have a
close connection with the PG-EXTRA algorithm in [8]. Specif-
ically, let us set η = 0 (no Nesterov momentum) and β = 1 (no
proximal variable). Then, we have ski = zki = xki for all k, i, and
the momentum and proximal variable update in (7) and (10) can
be removed. As a result, (11) reduces to

xk+
1
2 = xk−1+ 1

2 +Wxk − W̃xk−1

−Ψ−1(∇f(xk)−∇f(xk−1)), (15)

where W = U+ (γ + κ)Ψ−1 and W̃ = Ũ+ (γ + κ)Ψ−1.
One can see that (15) and (9) have an identical form as the
PG-EXTRA algorithm in [8, Eqn. (3a)-(3b)]. Therefore, the
proposed PPDM algorithm can be regarded as an accelerated
version of the PG-EXTRA with extra capability to handle non-
convex problems. One should note that, unlike (12) and (13),
the PG-EXTRA allows a more flexible choice of the mixing
matrix W, and thus it is also closely related to the GT based
methods [5].

Remark 2: The PPDM algorithm also has a close connection
with the distributed Nesterov gradient (D-NG) algorithm in [28].
Specifically, let us set α = c and β = 1 (no proximal variable)
and remove the non-smooth regularization term r(x). Then, we
have zki = xki for all k, i, and the proximal gradient update (9)
and the proximal variable update (10) can be removed. Under
the setting, as shown in [32], one can write (11) of the PPDM
algorithm as

xk+1 = W̃sk −Ψ−1∇f(sk) +Ck, (16)

where Ck = (Ũ(xk − sk) + κ(xk − sk)Ψ−1)−∑k
t=0(I−

W̃)xt can regarded as a cumulative correction term. Note that
the D-NG algorithm in [28, Eqn. (2)-(3)] is

sk = xk + η(xk − xk−1), (17)

xk+1 = W̃sk −Ψ−1∇f(sk). (18)

One can see that (18) and (16) have a similar form except for
the correction term. Note that the convergence of the D-NG
algorithm is proved in [28] only for convex problems with a
diminishing step size. Therefore, the proposed PPDM algorithm
is an enhanced counterpart of the D-NG algorithm with the
ability to handle non-convex and non-smooth problems.

C. Algorithm Development

In this subsection, let us elaborate how the SPPDM algorithm
is devised. Our proposed algorithm is inspired by the proximal
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AL framework in [18]. First, we introduce a proximal term z to
(5) as

min
x,z

f(x) + r(x) +
κ

2
‖x− z‖2 (19a)

s.t.Ax = 0, (19b)

where κ > 0 is a parameter. Obviously, (19) is equivalent to (5).
The purpose of adding the proximal term κ

2 ‖x− z‖2 is to make
the objective function in (19a) strongly convex with respect to
x when z is fixed and κ > 0 is large enough (however, note
that (19a) is not jointly convex with respect to (xT , zT )T ). Such
strong convexity will be exploited for building the algorithm
convergence.

Second, let us consider the AL function of (19) as follows

Lc(x, z;λ) = f(x) + r(x) + 〈λ,Ax〉
+
c

2
‖Ax‖2 + κ

2
‖x− z‖2, (20)

where λ ∈ R|E|n is the Lagrangian dual variable, and c > 0 is a
positive penalty parameter. Then, the Lagrange dual problem of
(19) can be expressed as

max
λ

min
x,z

Lc(x, z;λ). (21)

We apply the following inexact stochastic primal-dual updates
with momentum for problem (21): for k = 0, 1, 2, . . .,

λk+1 = λk + αAxk, (22)

sk = xk + η(xk − xk−1), (23)

xk+1 = argmin
x

g(x,xk, sk, zk, ξk;λk+1), (24)

zk+1 = zk + β(xk+1 − zk). (25)

Specifically, (22) is the dual ascent step with α > 0 being the
dual step size. In (23), the momentum variable sk is introduced
for the primal variable x. Let pk = A�λk, (22) can be replaced
by

pk+1 = pk + αA�Axk. (26)

To update x, we consider the inexact step as in (24) where
g(x,xk, sk, zk, ξk;λk+1) is a surrogate function given by

g(x,xk, sk, zk, ξk;λk+1)

= f(sk) + 〈Ḡ(sk, ξk),x− sk〉+ γ

2
‖x− sk‖2︸ ︷︷ ︸

(a)

+ r(x) + 〈pk+1,x〉
+
c

2
‖Ax‖2 + c

2
‖x− xk‖2B�B︸ ︷︷ ︸

(b)

+
κ

2
‖x− zk‖2. (27)

In (27), the term (a) is a quadratic approximation of f at sk using
the stochastic gradient Ḡ, where γ > 0 is a parameter. In term
(b) of (27), B is the signless incidence matrix of the graph G,
i.e., B = |A|, which satisfies A�A+B�B = 2D, where D =

diag{d1, . . . , dN} is the degree matrix of G. As shown in [16],
the introduction of c2‖x− xk‖2B�B can “diagonalize” c

2‖Ax‖2
and lead to distributed implementation of (24). In particular, one
can show that (24) with (27) can be expressed as

xk+1 = proxΨ
r

(
Ψ−1(γsk + cB�Bxk + κzk

−Ḡ(sk, ξk)− pk+1)
)
. (28)

As seen, due to the graphical structure of B�B, each xk+1
i in

(28) can be obtained in a distributed fashion using only xkj ,
j ∈N i from its neighbors. Lastly, we update z by applying the
gradient descent to Lc(xk+1, z;λk+1) with step size β, which
then yields (25).

To show how (7)-(10) are obtained, let us define

xk+
1
2 = Ψ−1

(
γsk + cB�Bxk + κzk

−Ḡ(sk, ξk)− pk+1
)
. (29)

Then, (28) can be written as

xk+1 = proxΨ
r

(
xk+

1
2

)
. (30)

Moreover, by subtracting xk−1+ 1
2 from xk+

1
2 , one obtains

xk+
1
2 = xk−1+ 1

2 + γΨ−1(sk − sk−1) + κΨ−1(zk − zk−1)

+ cΨ−1B�B(xk − xk−1)−Ψ−1(pk+1 − pk)

−Ψ−1(Ḡ(sk, ξk)− Ḡ(sk−1, ξk−1)). (31)

After substituting (26) into (31), we obtain

xk+
1
2 = xk−1+ 1

2 +Uxk − Ũxk−1

+ γΨ−1(sk − sk−1) + κΨ−1(zk − zk−1)

−Ψ−1(Ḡ(sk, ξk)− Ḡ(sk−1, ξk−1)), (32)

which is exactly (11) since U = cΨ−1B�B− αΨ−1A�A and
Ũ = cΨ−1B�B by (12) and (13), respectively.

In summary, (22) and (24) can be equivalently written as
(32) and (30), and therefore we obtain (23), (32), (30) and
(25) as the algorithm updates, which correspond to (7)–(10) in
Algorithm 1.

Before ending the section, we remark that it is possible to em-
ploy the existing stochastic primal-dual methods such as [33] for
solving the non-smooth and non-convex problem (5). However,
these methods require strict conditions on A. For example, the
stochastic ADMM method in [33] requires A to have full rank,
which cannot hold for the distributed optimization problem (5)
since the graph incidence matrix A for a connected graph must
be rank deficient.

III. CONVERGENCE ANALYSIS

In this section, we present the main theoretical results of the
proposed SPPDM and PPDM algorithms by establishing their
convergence conditions and convergence rate.
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A. Assumptions

We first make some proper assumptions on problem (5).
Assumption 1:
1) The function f(x) is a continuously differentiable func-

tion with Lipschitz continuous gradients, i.e., for constant
L > 0,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, (33)

for all x,y. Moreover, assume that there exists a constant
μ ≥ −L (possibly negative) such that

f(x)− f(y)− 〈∇f(y),x− y〉 ≥ μ

2
‖x− y‖2, (34)

for all x,y.
2) The objective function f(x) + r(x) is bounded from be-

low in the feasible set {x|Ax = 0}, i.e.,

f(x) + r(x) > f > −∞,

for some constant f .
Assumption 2: [34] The epigraph of each ri(xi), i.e.,

{(xi, yi)|ri(xi) ≤ yi}, is a polyhedral set and has a compact
form as

Sx,ixi + Sy,iyi ≥ ζi, (35)

whereSx,i ∈ Rqi×n,Sy,i ∈ Rqi and ζi ∈ Rqi are some constant
matrix and vectors.

There are many useful functions that satisfy Assumptions
1, such as the sigmoid function 1

1+exp−x , which is used as
activation functions in neural networks. In addition, the common
L1 regularization term ‖x‖1 satisfies Assumption 2, which is
widely used for obtaining sparse solutions.

For online/streaming learning, we also make the following
standard assumptions that the gradient estimates are unbiased
and have a bounded variance.

Assumption 3: [21], [25], [26] The stochastic gradient esti-
mate Gi(x, ξ) satisfies

E[Gi(x, ξ)] = ∇fi(x) (36)

E[‖Gi(x, ξ)−∇fi(x)‖2] ≤ σ2, (37)

for all x, where σ > 0 is a constant, and the expectation E is
with respect to the random sample ξ ∼ Bi.

It is easy to check that the gradient estimate of the mini-batch
samples satisfies

E

[∥∥∥∥ 1

|I|
|I|∑
j=1

Gi(x, ξj)−∇fi(x)
∥∥∥∥2
]
≤ σ2/|I|. (38)

B. Convergence Analysis of SPPDM

We define the following term

Q(x,λ) = ‖x− prox1
r(x−∇f(x)−A�λ)‖2 + ‖Ax‖2

(39)

as the optimally gap for a primal-dual solution (x,λ) of prob-
lem (5). Obviously, one can shown that when Q(x�,λ�) = 0,
(x�,λ�) is a KKT solution of (5). We define that (x�,λ�) is an
ε-stationary solution of (5) if Q(x�,λ�) < ε.

The convergence result is stated in the following theorem.
Theorem 1: Assume that Assumptions 1-3 hold true, and let

parameters satisfy

κ > −μ, γ > 3L, (40)

η ≤
√
κ+ 2c+ γ − 3L

2(γ − μ+ 3L)
:= η̄, (41)

moreover, let 0 < α ≤ c and β > 0 be both sufficiently small
(see (84) and (85)). Then, for a sequence {xk, zk,λk} generated
by Algorithm 1, it holds that

min
k=0,...,K−1

E[Q(xk,λk+1)] ≤ C0

(
φ0 − f

K
+
C1Nσ

2

|I|

)
,

(42)

where C0 and C1 are some positive constants depending on the
problem parameters (see (101) and (87)). In addition, φ0 is a
constant defined in (68).

To prove Theorem 1, the key is to define a novel stochastic
potential function E[φk+1] in (68) and analyze the conditions
for which E[φk+1] descends monotonically with the iteration
number k (Lemma 6). To achieve the goal, several approxima-
tion error bounds for the primal variable xk (Lemma 2) and the
dual variable λk (Lemma 4) are derived. Interested readers may
refer to Appendix B for the details.

By Theorem 1, we immediately obtain the following corollary.
Corollary 1: Let

|I| ≥ 2NC0C1σ
2

ε
andK ≥ 2C0(φ

0 − f)

ε
. (43)

Then,

min
k=0,...,K−1

E[Q(xk,λk+1)] ≤ ε, (44)

that is, an ε-stationary solution of problem (5) can be obtained
in an expected sense.

Remark 3: Given a mini-batch size |I| = O(1/ε), Corollary
1 implies that the proposed SPPDM algorithm has the conver-
gence rate of O(1/ε) to obtain an ε-stationary solution. In each
communication round k, each agent should receive the informa-
tion xkj , j ∈ Ni. Assume xkj ∈ Rn and the neighboring agents in
the subsetNi := {j ∈ V |(i, j) ∈ E}have sizedi. As a result, the
corresponding total communication complexity of the SPPDM

algorithm is proportional to 2
∑N

i=1 di
ε while the computational

complexity is O(N |I|/ε) = O(N/ε2). As shown in Table I, the
communication complexity O(1/ε) of the SPPDM algorithm is
smaller thanO(1/ε2) of D-PSGD [21], D2 [25], GNSD [26] and
R-SGD-M [31].

Remark 4: Our definition of ε-stationary point in (39) is a suf-
ficient condition for reaching a 2

N (1 + L2

σmin
)ε-stationary point

of D-PSGD, D2, PR-SGD-M and a 1
N (1 + 1

σmin
)ε-stationary

point of GNSD, where σmin is the smallest non-zero eigenvalue
of ATA. The proof is shown in the Appendix A.
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C. Convergence Analysis of PPDM

When the full gradient ∇f(xk) is available for the PPDM
algorithm, one can deduce a similar convergence result.

Theorem 2: Assume Assumptions 1-2 and the same condi-
tions in (40), (41), (85) and (84) hold true.
� Every limit point of the sequence {xk, zk,λk} generated

by the PPDM algorithm is a KKT solution of (5).
� Given K ≥ C0(φ

0−f)
ε , we have

min
k=0,...,K−1

Q(xk,λk+1) ≤ C0

(
φ0 − f

K

)
≤ ε.

The proof is presented in Appendix C.
To our knowledge, Theorem 1 and Theorem 2 are the first

results that show the O(1/ε) communication complexity of the
distributed primal-dual method with momentum for non-convex
and non-smooth problems. In both PPDM and SPPDM, the
number of the total communication round is in the same or-
der as the total number of iterations. Comparing with PPDM,
SPPDM randomly draws I samples to obtain a mini-batch
gradient. When the target accuracy ε is moderate and a batch size
|I| = 1/ε is proportional to full sample size, Corollary 1 shows
that stochastic methods and deterministic methods have the
same communication complexity. Numerical results in the next
section will demonstrate that the SPPDM and PPDM algorithms
can exhibit favorable convergence behavior than the existing
methods.

IV. NUMERICAL RESULTS

In this section, we examine the numerical performance of
the proposed SPPDM/PPDM algorithm and present comparison
results with the existing methods.

A. Distributed Non-Convex Truncated Losses

In this example, we use a real California housing data to train
a linear model. Consider the following distributed regression
problem with a nonconvex truncated loss [35]

min
x

N∑
i=1

(fi(x) + ςi‖x‖1) , (45)

where

fi(x) =
ρ

m

m∑
j=1

log

(
1 +

‖yj − h�j x‖2
2ρ

)
,

and ρ is a parameter to determine the truncation level. (hj , yj)
is the input data. We set m = 688, n = 8 and ρ = 5. Moreover,
we consider a Erdos Renyi graph and a ring graph withN = 30
agents. The probability for Erdos Renyi graph is 0.3.

We compare the PPDM algorithm with Prox-DGD [12],
PG-EXTRA [8], Prox-ADMM [18] and Network-DANE [36].
Note that theoretically PG-EXTRA and Network-DANE are not
guaranteed to converge for the non-convex problem (5). We
implement these two methods simply for comparison purpose.

For the PG-EXTRA, we choose the stepsize � = 0.1 ac-
cording to the sufficient condition suggested in [8]. Moreover,

Fig. 1. Comparison of proposed SPPDM with Prox-DGD, PG-EXTRA,
Prox-ADMM and Network-DANE in terms of optimal gap; the batch size is
|I| = 256.

Fig. 2. Comparison of proposed PPDM with Prox-DGD, PG-EXTRA, Prox-
ADMM and Network-DANE in terms of optimal gap; they uses the full gradient.

Network-DANE also uses the stepsize � = 0.1. According to
their convergence conditions, the diminishing step size � = 0.1

k+1
is used for the Prox-DGD.

For Prox-DGD and PG-EXTRA, the mixing matrix follows
the metropolis weight

[W]ij �

⎧⎨
⎩

1
max{di,dj}+1 , for (i, j) ∈ E ,
0, for (i, j) /∈ E and i 
= j.
1−∑j 
=i wij , for i = j

(46)

If not specified, the parameters of the SPPDM/PPDM and
the Prox-ADMM are given as α = .2, κ = 4, c = 1, γ = 40,
β = 0.1.1 For the proposed SPPDM, we consider two cases
about η, one is η = 0 without momentum, and the other is
η = 0.98. When η = 0, we denote SPPDM as SPPD. We use
the optimal gap defined in (39) to measure the performance.
We run 5 independents trials for each algorithm with randomly
generated data and random initial values. The optimal gap curves
obtained by averaging over all 5 trials are plotted in Figs. 1-2.

In Fig. 1, we observe that the SPPDM, PG-EXTRA, Prox-
ADMM and Network-DANE all perform better than Prox-DGD
in terms of the optimal gap. The reason is that these methods
all use constant step sizes rather than the diminishing step size.
In addition, the proposed SPPDM has better performance than
Prox-ADMM due to add the momentum technique. Compared

1By calculation, the Hessian matrix for the function fi(x) is

1
Ni

∑Ni

j=1

2ρhjh
T
j
(2ρ−‖hT

j
x−yj‖2)

(2ρ+‖hT
j
x−yj‖2)2

. It shows that the maximum eigenvalue

of this Hessian matrix is smaller than 1 (L < 1) with the given parameter. Thus,
the parameters of SPPDM/PPDM satisfy the conditions stated in Theorem 1.
Moreover, in [35] (Proposition 1), the authors have shown that the objective
function fi(x) has Lipschitz continuous gradient.
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Fig. 3. Convergence curves of the optimally gap achieved by our proposed
methods with different batch size and step size.

Fig. 1 (a) with Fig. 1 (b), it shows that the proposed method
performs better for both Erdos Renyi graph and a ring graph,
thus it is robust to the difficult multi-agent network.

The impact of the mini-batch size |I| and parameters γ are
analyzed in Fig. 3. When we consider the computational capa-
bility in each node, a smaller mini-batch size may be used. One
can see that the smaller mini-batch size we use, the larger error
one would suffer, which corroborates Corollary 1. In practice,
we may select a moderate mini-batch size to balance the com-
munication complexity and solution accuracy. With the same
mini-batch size, the larger values of γ correspond to smaller
primal and dual step sizes. Thus, the SPPDM with larger values
of γ has slower convergence; whereas as seen from the figures,
larger values of γ can lead to a smaller optimal gap.

For the offline setting, the comparison results of the proposed
PPDM with the existing methods are shown in Fig. 2. It can
be observed that the proposed PPDM enjoys the fastest conver-
gence. Compared with the Prox-ADMM, it is clear to see the
advantage of the PPDM with momentum for speeding up the
algorithm convergence. It also shows that the proposed method
enjoys sub-linear convergence for the offline/batch learning,
which is consistent with Theorem 2.

B. Distributed Neural Network

In this simulation, our task is to classify handwritten digits
from the MNIST dataset. The local loss function fi(θi) in each
node is the cross-entropy function, which is denoted as

fi(θ) = − 1

m

m∑
j=1

〈yj , log(hθ(xj))〉.

In this example, we do not consider nonsmooth term and inequal-
ity constraint set. Thus, many existing methods, D-PSGD [21],
D2 [25], Network-SVRG [36] and PR-SGD-M [31] can be
applied to train a classification DNN.

We consider two different neural network models, one is the
fully connected neural network (FCN) that has at most three
hidden layers, the other is the convolutional neural network
(CNN) that at most has three convolutional layers. For the fully
connected neural network, each hidden layer with 500 neurons.
Then we analyze the performance of the compared methods by
increasing the depth of the neural network.

Next, the 6× 104 training samples are divided into 10 subsets
and assigned to the N = 10 agents in two ways. The first is
the IID case, where the samples are sufficiently shuffled, and

Fig. 4. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the IID case by using FCN model.

Fig. 5. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the IID case by using FCN model.

then partitioned into 10 subsets with equal size (m = 6000).
The second is the Non-IID case, where we first sort the samples
according to their labels, divide them into 20 shards of size 3000,
and assign each of 10 agents 2 shards. Thus most agents have
samples of two digits only, which is popular appeared in the
Federated learning.

The communication graph is also a ring. We compare the
SPPDM with the D-PSGD [21], D2 [25], Network-SVRG [36],
NEXT [13] and PR-SGD-M [31]. The same mixing matrix in
(46) is used for the three methods. Moreover, a fixed step size
of � = 0.05 is used to ensure the convergence of these three
methods in the simulation. For the proposed SPPDM, we set
parameter c = 1, γ = 3, α = 0.001, κ = 0.1, β = 0.9, and η =
0.9. The batch size is |I| = 128.

We calculate the loss value and the classification accuracy
based on the average model θ̄ = 1/N

∑N
i=1 θi. Fig. 4 and Fig. 5

show the training loss and the classification accuracy for the IID
case for FCN model by averaging over all 3 trials, respectively.
From Fig. 4, we see that D2 and D-PSGD have a similar
performance; meanwhile, the proposed SPPDM performs bet-
ter than the other methods. Besides, compared the left figure,
middle figure and right figure in Figs. 4- 5, one can see that
SPPDM, PPDM, PR-SGD-M, NEXT enjoy fast decreasing of
the loss function and increasing of the classification accuracy,
especially for the deep networks [37], respectively. The reason
is that both SPPDM and PR-SGD-M use the momentum tech-
nique. We should point out that the communication overhead
of PR-SGD-M is twice of the SPPDM since the PR-SGD-M
requires the agents to exchange not only the variable xi but
also the momentum variables. Lastly, comparing the SPPDM
with SPPD, it shows again that the momentum techniques can
accelerate the algorithm convergence.

From Figs. 6- 7 for the IID case by using the CNN model, we
can also see the similar performance that SPPDM and PR-SGD-
M perform better with the increasing of the convolutional layer.
Figs. 8- 9 present the result for the non-IID case by using the
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Fig. 6. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the IID case by using CNN model.

Fig. 7. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the IID case by using CNN model.

Fig. 8. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the non-IID case by using CNN model.

Fig. 9. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the non-IID case by using CNN model.

CNN model, we can observe that the D2 and Network-SVRG
perform better than D-PSGD and SPPD, the reason may be
they use the variance reduction technique. In fact, by comparing
the curves in Fig. 6 with those in Fig. 8, one can see that the
convergence of SPPDM is also slowed under the Non-IID case,
but it still performs best among the methods under test.

V. CONCLUSION

In this paper, we have proposed a distributed stochastic prox-
imal primal-dual algorithm with momentum for minimizing

a non-convex and non-smooth function (5) over a connected
multi-agent network. We have shown (in Remark 1 and Re-
mark 2) that the proposed algorithm has a close connection
with some of the existing algorithms that are for convex and
smooth problems, and therefore can be regarded as an enhanced
counterpart of these existing algorithms. Theoretically, under
Assumptions 1-3, we have built the convergence conditions
of the proposed algorithms in Theorem 1 and Theorem 2. In
particular, we have shown that the proposed SPPDM can achieve
an ε-stationary solution with O(1/ε2) computational complex-
ity and O(1/ε) communication complexity, where the latter is
better than many of the existing methods which have O(1/ε2)
communication complexity (see Table 1). Experimental results
have demonstrated that the proposed algorithms with momen-
tum can effectively speed up the convergence. For distributed
learning under non-IID data distribution (Figs. 8-9), we have also
shown the proposed SPPDM performs better than the existing
methods.

APPENDIX A
PROOF OF REMARK 4

When the objective function only has smooth term that con-
sidered by the algorithms D-PSGD, D2, PR-SGD-M and GNSD,
the proposed measure Q(x,λ) can be rewritten as

Q(x,λ) = ‖∇f(x) +ATλ‖2 + ‖Ax‖2.

Firstly, PSGD, D2, PR-SGD-M use the measure
‖ 1
N

∑N
i=1 ∇fi(x̄)‖2 to define an ε-stationary point, where x̄ =

1
N

∑N
i=1 xi and N is the number of the agents. Then we show

that our definition of ε-stationary point is the sufficient condition
for 2

N (1 + L2

σmin
)ε-stationary point in D-PSGD, D2, PR-SGD-M,

which means ‖ 1
N

∑N
i=1 ∇fi(x̄)‖2 ≤ 2

N (1 + L2

σmin
)ε, where

σmin is the smallest non-zero eigenvalue of ATA.
Let p = [p1, p2, . . . , pN ]T = ATλ and recall that the defini-

tion ofA, we haveA1 = 0, where1 ∈ RNn is an all-one vector.
Thus

∑N
i=1 pi = (A1)Tλ = 0. Then it implies

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xi)
∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

(∇fi(xi) + pi)

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

‖∇fi(xi) + pi‖2

=
1

N
‖∇f(x) +ATλ‖2, (47)

where the inequality comes from the convexity of ‖ · ‖2. On the
other hand, we have

N∑
i=1

‖xi − x̄‖2 = ‖x− x̄‖2 ≤ 1

σmin
‖x− x̄‖2ATA

=
1

σmin
‖Ax−Ax̄‖2 =

1

σmin
‖Ax‖2, (48)
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Then we have∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x̄)
∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xi)
∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

N

N∑
i=1

(∇fi(x̄)−∇fi(xi))
∥∥∥∥∥
2

≤ 2

N

∥∥∇f(x) +ATλ
∥∥2 + 2

N

N∑
i=1

‖∇fi(x̄)−∇fi(xi)‖2

≤ 2

N

∥∥∇f(x) +ATλ
∥∥2 + 2L2

N

N∑
i=1

‖x̄− xi‖2

≤ 2

N

∥∥∇f(x) +ATλ
∥∥2 + 2L2

Nσmin
‖Ax‖2

≤ 2

N

(
1 +

L2

σmin

)(∥∥∇f(x) +ATλ
∥∥2 + ‖Ax‖2

)

=
2

N

(
1 +

L2

σmin

)
Q(x,λ), (49)

where the first inequality uses Cauchy-Schwartz inequality; the
second inequality comes from (47); the third inequality dues to
the assumption that f has Lipschitz continuous gradients and L
is the Lipschitz constant; the fourth inequality dues to (48). Thus
Q(x,λ) ≤ ε, we have ‖ 1

N

∑N
i=1 ∇fi(x̄)‖2 ≤ 2

N (1 + L2

σmin
)ε.

Secondly, for the GNSD, the performance measure is defined
as ‖ 1

N

∑N
i=1 ∇fi(xi)‖2 + 1

N

∑N
i=1 ‖xi − x̄‖2. Then we show

that our definition of ε-stationary point is the sufficient condition
for 1

N (1 + 1
σmin

)ε-stationary point in GNSD. Using (47) and
(48), we have∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xi)
∥∥∥∥∥
2

+
1

N

N∑
i=1

‖xi − x̄‖2

≤ 1

N

∥∥∇f(x) +ATλ
∥∥2 + 1

Nσmin
‖Ax‖2

≤ 1

N

(
1 +

1

σmin

)
Q(x,λ).

APPENDIX B
PROOF OF THEOREM 1

Let us recapitulate the augmented Lagrange function in (20)
below

Lc(x, z;λ) = f(x) + r(x) + 〈λ,Ax〉
+
c

2
‖Ax‖2 + κ

2
‖x− z‖2. (50)

We introduce some auxiliary functions as follows

d(z;λ) = min
x
Lc(x, z;λ) (51)

x(z;λ) = argmin
x

Lc(x, z;λ) (52)

P (z) = min
Ax=0

f(x) + r(x) +
κ

2
‖x− z‖2 (53)

x(z) = argmin
Ax=0

f(x) + r(x) +
κ

2
‖x− z‖2. (54)

Besides, we define the full gradient iterate x̂k+1 and ẑk+1,

x̂k+1 := argmin
x

g(x,wk;λk+1) (55)

ẑk+1 := zk + β(x̂k+1 − zk), (56)

where wk = [xk, sk, zk] and

g(x,wk;λk+1)

= f(sk) + 〈∇f(sk),x− sk〉+ γ

2
‖x− sk‖2 + r(x)

+ 〈λk+1,Ax〉+ c

2
‖Ax‖2 + c

2
‖x− xk‖2B�B +

κ

2
‖x− zk‖2.

(57)

We also define

g(x,wk, ξk;λk+1) := g(x,xk, sk, zk, ξk;λk+1)

for (27) at our disposal.

A. Some Error Bounds

Firstly, we show the upper bound between xk+1 and x̂k+1.
Lemma 1: Suppose Assumption 3 holds, we have

E[‖xk+1 − x̂k+1‖2] ≤ Nσ2

(γ + 2c+ κ)2|I| . (58)

Proof: See Reference [32]. �
Lemma 2: Suppose κ > −μ. There exists some positive con-

stants σ1, σ2 such that the following primal error bound holds

‖xk − x(zk;λk+1)‖ ≤ σ1‖xk − x̂k+1‖+ σ2‖xk − sk‖.
(59)

Proof: Based on κ > −μ, we know thatLc in (50) is strongly
convex inxwith modulusκ+ μ and Lipschitz constantκ+ L+
cσ2
A, where σA is the spectral norm of the matrix. Thus, we can

apply [38, Theorem 3.1] to upper bound the distance between
xk and the optimal solution x(zk;λk+1)

‖xk − x(zk;λk+1)‖ ≤ �‖∇̃xLc(x
k, zk;λk+1)‖, (60)

where � =
κ+L+cσ2

A+1

κ+μ and

∇̃xLc(x, z;λ) = x− proxΨ
r (x−∇x(Lc(x, z;λ)− r(x)))

is known as the proximal gradient.
We can bound ‖∇̃xLc(x

k, zk;λk+1)‖ as follows

‖∇̃xLc(x
k, zk;λk+1)‖

= ‖xk − proxΨ
r (x

k −∇x(Lc(x
k, zk;λk+1)− r(xk)))‖

≤ ‖xk − x̂k+1‖
+ ‖x̂k+1 − proxΨ

r (x
k −∇x(Lc(x

k, zk;λk+1)− r(xk)))‖
= ‖xk − x̂k+1‖

+
∥∥∥proxΨ

r (x̂
k+1 −∇x(g(x̂

k+1,wk;λk+1)− r(x̂k+1)))
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− proxΨ
r (x

k −∇x(Lc(x
k, zk;λk+1)− r(xk)))

∥∥∥
≤ (2 + 2cdmax + γ + κ)‖xk − x̂k+1‖+ (γ + L)‖xk − sk‖,

where dmax = max{d1, . . . , dN}; the second equality is ob-
tained by using the optimality condition of x̂k+1 in (55), and
the second inequality is based on the nonexpansive property of
the proximal operator. Denote

σ1 = �(2 + 2cdmax + γ + κ), (61)

σ2 = γ + L. (62)

The proof is complete. �
Lemma 3: (Lemma 3.2 in [18]) Suppose κ > −μ, and As-

sumption 1 holds. There exists some positive constants σ3, σ4
such that the following error bounds hold

‖λ1 − λ2‖ ≥ σ3‖x(z;λ1)− x(z;λ2)‖ (63)

‖z1 − z2‖ ≥ σ4‖x(z1;λ)− x(z2;λ)‖, (64)

where

σ3 = (κ+ μ)/σA (65)

σ4 = (κ+ μ)/κ. (66)

Lemma 4: Suppose that Assumptions 1-2 hold and κ > μ.
Then, there exist some positive scalars σ5, Δ such that the
following dual error bound holds

‖x(z,λ)− x(z)‖ ≤ σ5‖Ax(z;λ)‖, foranyz,λ. (67)

where σ5 depends only on the constants L, κ, σA, μ and the
matrices A,Sx,Sy .

Proof: The lemma is an extension of [19, Lemma 3.2], where
the non-smooth term r(x) of (5) is limited to an indicator
function of a polyhedral set. Due to limited space, the detailed
proof are relegated to the supplementary document [39].

�

B. Descent Lemmas

In order to show the convergence of Algorithm 1, we consider
a new potential function,

E[φk+1] � E[Lc(x
k+1, zk+1;λk+1) + τ‖xk+1 − xk‖2]

+ E[2P (zk+1)− 2d(zk+1;λk+1)], (68)

for some τ > 0. By the weak duality, we have

Lc(x, z;λ) ≥ d(z;λ), P (z) ≥ d(z;λ). (69)

Thus, we have E[φk] ≥ E[P (zk)]. According to the definition
of P (zk) in (53) and Assumption 1 (ii), we obtain P (zk) ≥ f .
As a result, E[φk] is bounded below by f .

Lemma 5: For a sequence {xk, zk,λk} generated by Algo-
rithm 1, if κ > −μ, γ > 3L, 0 < β < 1 and

0 ≤ η ≤
√
κ+ 2c+ γ − 3L

2(γ − μ+ 3L)
:= η̄, (70)

there exit some positive constants τ , σ̂1 and σ̂2 such that

σ̂1 � κ+ 2c+ γ − 3L

2
− 2τ ≥ 0 (71)

σ̂2 � μ− γ − 3L

2
η̄2 + τ ≥ 0, (72)

then

E[Lc(x
k, zk;λk) + τ‖xk − xk−1‖2]

− E[Lc(x
k+1, zk+1;λk+1)− τ‖xk+1 − xk‖2]

≥ −αE[‖Axk‖2] + κ

2β
E[‖zk − zk+1‖2]

+ σ̂1E[‖xk − x̂k+1‖2] + σ̂2E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| . (73)

Proof: Firstly, according to (20) and (22), we have

E[Lc(x
k, zk;λk)− Lc(x

k, zk;λk+1)] = −αE[‖Axk‖2].
(74)

Secondly, we have

E[Lc(x
k, zk;λk+1)− Lc(x

k+1, zk;λk+1)]

= E[Lc(x
k, zk;λk+1)− g(xk,wk;λk+1)]

+ E[g(xk,wkλk+1)− g(x̂k+1,wk;λk+1)]

+ E[g(x̂k+1,wk;λk+1)− g(xk+1,wk, ξk;λk+1)]

+ E[g(xk+1,wk, ξk;λk+1)− Lc(x
k+1, zk;λk+1)]. (75)

Next, we bound each of the terms in the right hand side of (75).
Based on the definition of function g in (57), we have

E[Lc(x
k, zk;λk+1)− g(xk,wk;λk+1)]

= E[f(xk)− f(sk)− 〈∇f(sk),xk − sk〉 − γ

2
‖xk − sk‖2]

≥ μ− γ

2
E[‖xk − sk‖2], (76)

where the inequality comes from (34) in Assumption 1. Using
the strongly convexity of the objective function g (with mod-
ulus κ+ 2c+ γ) and the definition of x̂k+1 in (55), we can
obtain

E[g(xk,wk;λk+1)− g(x̂k+1,wk;λk+1)]

≥ κ+ 2c+ γ

2
E[‖xk − x̂k+1‖2]. (77)

In addition, we have

E[g(x̂k+1,wk;λk+1)− g(xk+1,wk, ξk;λk+1)]

= E[g(x̂k+1,wk, ξk;λk+1)− g(xk+1,wk, ξk;λk+1)]

≥ 0, (78)

where the first equality dues to (36) in Assumption 3, and the
above inequality dues to xk+1 is the optimal solution in (24).
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Lastly, we can bound

E[g(xk+1,wk, ξk;λk+1)− Lc(x
k+1, zk;λk+1)]

= E[f(sk)] +
1

|I|
|I|∑
j=1

E[〈G(sk, ξkj ),xk+1 − sk〉]

+ E

[γ
2
‖xk+1 − sk‖2] + c

2
‖xk+1 − xk‖2B�B − f(xk+1)

]

≥ 1

|I|
|I|∑
j=1

E[〈G(sk, ξkj )−∇f(sk),xk+1 − sk〉]

+
γ − L

2
E[‖xk+1 − sk‖2] + c

2
E[‖xk+1 − xk‖2B�B]

≥ − Nσ2

2γ|I| −
L

2
E[‖xk+1 − sk‖2], (79)

where the first inequality is obtained by applying the descent
lemma [40, Lemma1.2.3]

f(xk+1) ≤ f(sk) + 〈∇f(sk),xk+1 − sk〉+ L

2
‖xk+1 − sk‖2

owing to gradient Lipschitz continuity in (33); the second in-
equality holds by using the Young’s inequality a�b ≥ −‖a‖2

2γ −
γ‖b‖2

2 and (37) in Assumption 3. Using the convexity of the
operator ‖ · ‖2, we have

‖xk+1 − sk‖2 ≤ 3‖xk+1 − x̂k+1‖2 + 3‖x̂k+1 − xk‖2

+ 3‖xk − sk‖2. (80)

Substituting (58) and (80) into (79) gives rise to

E[g(xk+1,wk, ξk;λk+1)− Lc(x
k+1, zk;λk+1)]

≥ −
(

1

2γ
+

3L
2(γ + 2c+ κ)2

)
Nσ2

|I|

− 3L
2
E[‖x̂k+1 − xk‖2]− 3L

2
E[‖sk − xk‖2]. (81)

By further substituting (76)-(78) and (81) into (75), we obtain

E[Lc(x
k, zk;λk+1) + τ‖xk − xk−1‖2

− Lc(x
k+1, zk;λk+1)− τ‖xk+1 − xk‖2]

≥ μ− γ

2
E[‖xk − sk‖2] + κ+ 2c+ γ

2
E[‖xk − x̂k+1‖2]

− 3L
2
E[‖x̂k+1 − xk‖2]− 3L

2
E[‖sk − xk‖2]

−
(

1

2γ
+

3L
2(γ + 2c+ κ)2

)
σ2

|I| + τE[‖xk − xk−1‖2]

− 2τE[‖xk+1 − x̂k+1‖2]− 2τE[‖x̂k+1 − xk‖2]
= σ̂1E[‖xk − x̂k+1‖2] + σ̂2E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| , (82)

where σ̂1 and σ̂2 are defined in (71) and (72), respectively, and
the equality is obtained by applying (23).

Thirdly, according to the definition of the z update in (25), we
have

E[Lc(x
k+1, zk;λk+1)− Lc(x

k+1, zk+1;λk+1)]

≥ κ

2β
(2− β)E[‖zk − zk+1‖2]

≥ κ

2β
E[‖zk − zk+1‖2], (83)

where the last inequality is due to 0 < β < 1. By combining
(74), (82) and (83), we obtain (73). Besides, (71) and (72) implies
(70). �

Lemma 6: Under Assumptions 1-3, if κ > −μ, γ > 3L, η is
a constant satisfies the condition (41), and

0 < α ≤ min

{
σ̂1

4σAσ2
1

,
σ̂2

4σ2
Aσ

2
2η

2
, c

}
, (84)

0 < β < min

{
α

12κσ2
5

,
σ4
36
, 1

}
, (85)

where σ1, σ2, σ4 and σ5 are constants denoted in (61) and (62),
(66) and (67), respectively. Then we have

E[φk − φk+1]

≥ κ(1− β)β

4
E[‖x̂k+1 − zk‖2] + α

2
E[‖Ax(zk,λk+1)‖2]

+
σ̂1
2
E[‖xk − x̂k+1‖2] + σ̂2

2
E[‖xk − xk−1‖2]− C1Nσ

2

|I| ,

(86)

where x̂k+1 and ẑk+1 are defined in (55) and (56), and

C1 =

(
1

2γ
+

6L+ 8τ + κ(1− β)

4(γ + 2c+ κ)2

)
. (87)

Proof: From the definition of d(z;λ) in (51), we have

E[d(zk;λk+1)− d(zk;λk)]

= E[Lc(x(z
k;λk+1), zk;λk+1)− Lc(x(z

k;λk), zk;λk)]

≥ E[Lc(x(z
k;λk+1), zk;λk+1)− Lc(x(z

k;λk+1), zk;λk)]

= αE[〈Axk,Ax(zk,λk+1)〉],

where the inequality is due to x(zk;λk) =
argminx Lc(x, z

k;λk) and the second equality comes from
the iterates in (22). Using a similar technique, we have

E[d(zk+1;λk+1)− d(zk;λk+1)]

≥ κ

2
E[(zk+1 − zk)�(zk+1 + zk − 2x(zk+1,λk+1))].

Combing the above two inequalities, we know

E[d(zk+1;λk+1)− d(zk;λk)]

≥ αE[〈Axk,Ax(zk,λk+1)〉]
+
κ

2
E[(zk+1 − zk)�(zk+1 + zk − 2x(zk+1,λk+1))]. (88)
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Based on Danskin’s theorem [41, Proposition B.25] in convex
analysis and P (z) defined in (53) with κ > −μ, we can have

∇P (zk) = κ(zk − x(zk)).

Thus, it shows

‖∇P (zk)−∇P (zk+1)‖
≤ κ‖zk − zk+1‖+ κ‖x(zk+1)− x(zk)‖
≤ κσ̃4‖zk+1 − zk‖,

where σ̃4 = 1 + σ−1
4 and the final inequality is due to Lemma 3.

The above inequality shows the gradient of P (zk) is Lipschitz
continuous, which therefore it satisfies the descent lemma

E[P (zk+1)− P (zk)]

≤ E[κ(zk+1 − zk)�(zk − x(zk))] +
κσ̃4
2

E[‖zk+1 − zk‖2].
(89)

By combining (88), (89) and (73), we obtain

E[φk − φk+1]

≥ −αE[‖Axk‖2] + κ

2β
E[‖zk − zk+1‖2]

+ σ̂1E[‖xk − x̂k+1‖2]− 2E[κ(zk+1 − zk)�(zk − x(zk))]

+ σ̂2E[‖xk − xk−1‖2]−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I|
− κσ̃4E[‖zk+1 − zk‖2] + 2αE[〈Axk,Ax(zk,λk+1)〉]
+ κE[(zk+1 − zk)�(zk+1 + zk − 2x(zk+1,λk+1))]

= αE[‖Ax(zk,λk+1)‖2]− αE[‖A(xk − x(zk,λk+1))‖2]

+ σ̂1E[‖xk − x̂k+1‖2] +
(
κ

2β
+ κ− κσ̃4

)
E[‖zk+1 − zk‖2]

+ 2κE[(zk+1 − zk)�(x(zk)− x(zk+1;λk+1))]

+ σ̂2E[‖xk − xk−1‖2]−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| ,
(90)

where the equality comes from completing the square

E[‖A(xk − x(zk,λk+1))‖2]
= E[‖Axk‖2 − 2〈Axk,Avx(zk,λk+1) + ‖Ax(zk,λk+1)‖2〉].

We further bound the right-hand-side terms of (90). By using
the Young’s inequality, we have

2(zk+1 − zk)�(x(zk)− x(zk;λk+1))

≥ −‖zk+1 − zk‖2
6β

− 6β‖x(zk)− x(zk;λk+1)‖2

≥ −‖zk+1 − zk‖2
6β

− 6βσ2
5‖Ax(z;λ)‖2, (91)

where the lase inequality dues to (67) in Lemma 4. Besides,
using the error bound (64) in Lemma 3, we have

(zk+1 − zk)�(x(zk;λk+1)− x(zk+1;λk+1))

≥ −‖zk+1 − zk‖‖x(zk;λk+1)− x(zk+1;λk+1)‖

≥ − 1

σ4
‖zk+1 − zk‖2. (92)

Also, based on the error bound (59) in Lemma 2, we
obtain

‖A(xk − x(zk,λk+1))‖2

≤ 2σ2
Aσ

2
1‖xk − x̂k+1‖2 + 2σ2

Aσ
2
2‖xk − sk‖2. (93)

By substituting (91), (92) and (93) into (90), we therefore
obtain

E[φk − φk+1]

≥ (α− 6κβσ2
5)E[‖Ax(zk,λk+1)‖2]

+

(
κ

2β
+ κ− κσ̃5 − κ

6β
− 2κ

σ4

)
E[‖zk+1 − zk‖2]

+
(
σ̂1 − 2ασ2

Aσ
2
1

)
E[‖xk − x̂k+1‖2]

+ (σ̂2 − 2ασ2
Aσ

2
2η

2)E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| . (94)

From (85), we know β < σ4

36 . By recalling σ̃4 = 1 + σ−1
4 , we

have
κ

2β
+ κ− κσ̃4 − κ

6β
− 2κ

σ4
≥ κ

4β
.

As β < α
12κσ2

5
by (85), we have α− 6κβσ2

5 ≥ α
2 . Similarly,

based on (84), we have

σ̂1 − 2ασ2
Aσ

2
1 ≥ σ̂1

2
, σ̂2 − 2ασ2

Aσ
2
2η

2 ≥ σ̂2
2
.

Thus, it follows from (94) that

E[φk − φk+1]

≥ κ

4β
E[‖zk+1 − zk‖2] + α

2
E[‖Ax(zk,λk+1)‖2]

+
σ̂1
2
E[‖xk − x̂k+1‖2] + σ̂2

2
E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| . (95)

Note that by using the definition of ẑk+1 in (56) and by (25), we
have

ẑk+1 = zk+1 + β(x̂k+1 − xk+1). (96)

Thus, we can bound E[‖zk+1 − zk‖2] as

E[‖zk+1 − zk‖2]

≥
(
1− 1

β

)
E[‖zk+1 − ẑk+1‖2] + (1− β)E[‖ẑk+1 − zk‖2]
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= β(β − 1)E[‖xk+1 − x̂k+1‖2] + (1− β)E[‖ẑk+1 − zk‖2]

≥ β(β − 1)

(γ + 2c+ κ)2
Nσ2

|I| + (1− β)β2
E[‖x̂k+1 − zk‖2],

where the last inequality comes from (58) and (56). By substi-
tuting the above inequality (95), we obtain (86). �

C. Proof of Theorem 1

We are ready to prove Theorem 1. By summing (86) for k =
0, 1, . . . ,K − 1, we obtain

E[φ0 − φK ]

≥ κ(1− β)β

4

K−1∑
k=0

E[‖x̂k+1 − zk‖2]−K
C1Nσ

2

|I|

+
α

2

K−1∑
k=0

E[‖Ax(zk,λk+1)‖2] + σ̂1
2

K−1∑
k=0

E[‖xk − x̂k+1‖2]

+
σ̂2
2

K−1∑
k=0

E[‖xk − xk−1‖2]. (97)

Recall the definition of Q(x,λ) in (39)

Q(x,λ) = ‖x− prox1
r(x−∇f(x)−A�λ)‖2 + ‖Ax‖2.

(98)

To obtain the desired result, we first consider

E[‖xk − prox1
r(x

k −∇xf(x
k)−A�λk+1)‖2]

≤ 2E[‖xk − x̂k+1‖2]
+ 2E[‖x̂k+1 − prox1

r(x
k −∇xf(x

k)−A�λk+1)‖2] (99)

where the inequality dues to ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Notice

E[‖x̂k+1 − prox1
r(x

k −∇xf(x
k)−A�λk+1)‖2]

= E[‖prox1
r(x̂

k+1 −∇xg(x̂
k+1,wk;λk+1))

− prox1
r(x

k −∇xf(x
k)−A�λk+1)‖2]

≤ E[‖x̂k+1 − xk −∇xg(x̂
k+1,wk;λk+1)

+∇xf(x
k) +A�λk+1‖2]

≤ 2E[‖x̂k+1 − xk‖2]
+ 2E[‖∇xg(x̂

k+1,wk;λk+1)−∇xf(x
k)−A�λk+1‖2],

= 2E[‖x̂k+1 − xk‖2] + 2E[‖∇xf(s
k)−∇xf(x

k)

+ γ(x̂k+1 − sk) + cD(x̂k+1 − xk) + cATAxk

+ κ(x̂k+1 − zk)‖2]
≤ 2E[‖x̂k+1 − xk‖2] + 10E[‖∇xf(s

k)−∇xf(x
k)‖2

+ ‖γ(x̂k+1 − sk)‖2 + ‖cD(x̂k+1 − xk)‖2 + ‖cATAxk‖2

+ ‖κ(x̂k+1 − zk)‖2]
≤ (2 + 10c2d2max + 20γ2)E[‖x̂k+1 − xk‖2]

+ 10c2σ2
AE[‖Axk‖2]

+ (10L2 + 20γ2)E[‖xk − sk‖2] + 10κ2E[‖x̂k+1 − zk‖2],

where dmax is the largest value of matrix D, the first equality is
due to the optimal condition for (55), i.e., x̂k+1 = prox1

r(x̂
k+1 −

∇xg(x̂
k+1,wk;λk+1); the first inequality is owing to the non-

expansive property of the proximal operator; the second inequal-
ity dues to ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2; the second equality is
obtained by the definition of function g in (57); the last inequality
dues to the L-smooth in (33).

Next, we show the upper bound for ‖Axk‖ as

E[‖Axk‖2]
≤ 2E[‖Ax(zk,λk+1)‖2] + 2σ2

AE[‖xk − x(zk,λk+1)‖2]
≤ 2E[‖Ax(zk,λk+1)‖2] + 4σ2

Aσ
2
1E[‖xk − x̂k+1‖2]

+ 4σ2
Aσ

2
2E[‖xk − sk‖2], (100)

where the last inequality comes from Lemma 2. Now, we
consider the upper bound of (98). Using the above inequalities
(99)-(100), we can obtain

min
k=0,...,K−1

E[Q(xk,λk+1)]

≤ 1

K

K−1∑
k=0

E[‖xk − prox1
r(x

k −∇xf(x
k)−A�λk+1)‖2]

+
1

K

K−1∑
k=0

E[‖Axk‖2]

≤ K1

K

K−1∑
k=0

E[‖xk − x̂k+1‖2 + K2

K

K−1∑
k=0

‖xk − xk−1‖2]

+
K3

K

K−1∑
k=0

E[‖x̂k+1 − zk‖2] + K4

K

K−1∑
k=0

E[‖Ax(zk,λk+1)‖2].

where

K1 = 6 + 40γ + 20c2d2max + 4(20c2σ2
A + 1)σ2

Aσ
2
1 ,

K2 = (20L2 + 20γ2)η̄2 + 4(20c2σ2
A + 1)σ2

Aσ
2
2 η̄

2,

K3 = 20κ2,K4 = 2(20c2σ2
A + 1).

Further applying (97), we have

min
k=0,...,K−1

E[Q(xk,λk+1)] ≤ C0

(
E[φ0 − φK ]

K
+
C1Nσ

2

|I|
)

≤ C0

(
φ0 − f

K
+
C1Nσ

2

|I|

)
,

where f is the lower bound of φ and C0 is defined as follows,

C0 � 2K1

σ̂1
+
K2

σ̂2
+

4K3β

κ(1− β)
+

2K4

α
, (101)
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APPENDIX C
PROOF OF THEOREM 2

Proof: If we know the full gradient ∇f(xk), i.e.,
G(xk, ξk) = ∇f(xk), then σ2 = 0. Substituting it into (86),
we have

φk − φk+1

≥ κ(1− β)β

4

∥∥x̂k+1 − zk
∥∥2 + α

2

∥∥Ax(zk,λk+1)
∥∥2

+
σ̂1
2

∥∥xk − x̂k+1
∥∥2 + σ̂2

2

∥∥xk − xk−1
∥∥2 ≥ 0.

Thus φk is monotonically decreasing and it has lower bound f .
This implies that

max{‖xk − x̂k+1‖, ‖zk − x̂k+1‖, ‖Ax(zk;λk+1)‖} → 0.

Thus, according to [19, Theorem 2.4], every limit point gener-
ated by PPDM algorithm is a KKT point of problem (5). In addi-

tion, substituting σ2 = 0 into (42) and picking K ≥ C0(φ
0−f)
ε ,

we have

min
k=0,...,K−1

Q(xk,λk+1) ≤ C0

(
φ0 − f

K

)
≤ ε.

Therefore, the proof is completed. �
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